

GCE MARKING SCHEME

MATHEMATICS - C1-C4 & FP1-FP3 AS/Advanced

SUMMER 2015

© WJEC CBAC Ltd.

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2015 examination in GCE MATHEMATICS - C1-C4 & FP1-FP3. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

	Page
C1	1
C2	6
C3	11
C4	18
FP1	23
FP2	28
FP3	32

1.	(<i>a</i>)	(i)	Gradient of $AB = \frac{\text{increase in } y}{\text{increase in } x}$	M1
			Gradient of $AB = -\frac{1}{3}$ (or equivalent)	A1
		(ii)	A correct method for finding the equation of <i>AB</i> using candidate's gradient for <i>AB</i> Equation of <i>AB</i> : $y-3 = -\frac{1}{3}[x-(-7)]$ (or equivalent)	M1
			(f.t. candidate's gradient of AB)	A1
			Equation of AB : $x + 3y - 2 = 0$ (convincing)	A1
		(iii)	Use of $m_L \times m_{AB} = -1$	M1
			A correct method for finding the equation of L using	(1)
			candidate s gradient for L (to be awarded only if corresponding M1 is not awarded	(MII)
			nart (ii))	um
			Equation of L: $y-5 = 3[x-(-3)]$ (or equivalent	nt)
			(f.t. candidate's gradient of AB)	A1
		Note:	Total mark for part (a) is 7 marks	
	(<i>b</i>)	An att $x = -2$	tempt to solve equations of AB and L simultaneously (convincing) (c.a.o	M1 .) A1
	(<i>c</i>)	A corr AB	rect method for finding at least one coordinate of the mid-po	oint of M1
		y-cooi	cdinate of the mid-point of $AB = 1.5$ (or x-coordinate = -2.5)
		$\Rightarrow D$ i	s not the mid-point of AB or	/
		$\Rightarrow L i$	s not the perpendicular bisector of AB or	
		\Rightarrow the	mid-point does not lie on L	A1
		Alter	native Mark Scheme	
		A con	rect method for finding the lengths of two of AB, AD, BD of $AB = \sqrt{90}$ $AD = \sqrt{10}$ $BD = \sqrt{40}$	M1
		$\Rightarrow D$ i	as not the mid-point of AB or	
		$\Rightarrow L i$	s not the perpendicular bisector of AB or	
		\Rightarrow the	mid-point does not lie on L	A1

(d)	A correct method for finding the	length of $BD(CD)$	M 1
	$BD = \sqrt{40}$	(or equivalent)	A1
	$CD = \sqrt{10}$		A1
	Substitution of candidate's derive	ed values in $tan ABC = \underline{CD}$	m1
		BD	
	$\tan ABC = \underline{1}$	(c.a.o.)	A1
	2		

Special Case

A candidate who has been awarded M0 A0 A0 m0 A0 may be awarded SC1 for one of $AB = \sqrt{90}$, $AC = \sqrt{20}$, $BC = \sqrt{50}$

2. (a)
$$\frac{4\sqrt{2} - \sqrt{11}}{3\sqrt{2} + \sqrt{11}} = \frac{(4\sqrt{2} - \sqrt{11})(3\sqrt{2} - \sqrt{11})}{(3\sqrt{2} + \sqrt{11})(3\sqrt{2} - \sqrt{11})}$$
 M1

Numerator:
$$12 \times 2 - 4 \times \sqrt{2} \times \sqrt{11} - 3 \times \sqrt{11} \times \sqrt{2} + 11$$
 A1

Denominator:
$$18 - 11$$
 A1
 $\frac{4\sqrt{2} - \sqrt{11}}{3\sqrt{2} + \sqrt{11}} = 5 - \sqrt{22}$ (c.a.o.) A1

Special case If M1 not gained, allow SC1 for correctly simplified numerator or denominator following multiplication of top and bottom by $3\sqrt{2} + \sqrt{11}$

(b)
$$\frac{7}{2\sqrt{14}} = p\sqrt{14}$$
, where p is a fraction equivalent to $\frac{1}{4}$ B1
 $\left(\frac{\sqrt{14}}{2}\right)^3 = q\sqrt{14}$, where q is a fraction equivalent to $\frac{7}{4}$ B1
 $\frac{7}{2\sqrt{14}} + \left(\frac{\sqrt{14}}{2}\right)^3 = 2\sqrt{14}$ (c.a.o.) B1

<i>(a)</i>	y-coordinate of $P = -4$	B 1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 2x - 13$	
	dx	
	(an attempt to differentiate, at least one non-zero term correct)	M1
	An attempt to substitute $x = 2$ in candidate's expression for $\frac{dy}{dx}$	m1
	Value of dy at $P = -5$ (c.a.o.)	A1
	$\frac{d}{dx}$	
	Gradient of normal = $\frac{-1}{-1}$	m1
	candidate s value for <u>dy</u>	
	Equation of normal to C at P: $y - (-4) = \frac{1}{5}(x-2)$ (or equiva (f.t. candidate's value for $\frac{dy}{dx}$ and the candidate's derived y-value a $\frac{dy}{dx}$	lent) at
	x = 2 provided M1 and both m1's awarded)	A1
(<i>b</i>)	Putting candidate's expression for $\frac{dy}{dx} = -8$	M1
	An attempt to collect terms, form and solve quadratic equation	
	in a (or x) either by correct use of the quadratic formula or by get	ting
	the equation into the form $(ma + n)(pa + q) = 0$, with $m \times p =$	-
	candidate's coefficient of a^2 and $n \times q =$ candidate's constant	m1
	$3a^2 - 2a - 5 = 0 \Rightarrow a = -1 \text{ or } \underline{5}$ (both values) (c.a.o.)	A1

4. (a)
$$4(x-3)^2 - 225$$
 B1 B1 B1

(b)
$$4(x-3)^2 = 225$$
 (f.t. candidate's values for a, b, c) M1
 $(x-3) = (\pm) \frac{15}{2}$ (f.t. candidate's values for a, b, c) m1
 $x = \frac{21}{2}, -\frac{9}{2}$ (both values) A1

5. (a) An expression for
$$b^2 - 4ac$$
, with at least two of a , b or c correct M1
 $b^2 - 4ac = (2k-5)^2 - 4 \times k \times (k-6)$ A1
Putting $b^2 - 4ac < 0$ m1
 $k < -\frac{25}{4}$ (or equivalent) A1

(b)
$$k = -\frac{25}{4}$$
 [f.t. the end point(s) of the candidate's range in (a)] B1

3.

6.	(<i>a</i>)	[1-	\underline{x} $]^8 =$	$1-4x+7x^2-7x^3+\ldots$	B1 B1 B1 B1
		l	ر2	(– 1 for	further incorrect simplification)

(<i>b</i>)	First term $= 2^n$		B 1
	$2^n = 32 \Longrightarrow n = 5$		B1
	Second term = $n \times 2^{n-1} \times ax$		B1
	a = -3	(f.t. candidate's value for <i>n</i>)	B1

7.	<i>(a)</i>	$y + \delta y = 9(x + \delta x)^2 - 8(x + \delta x) - 3$		B1
		Subtracting y from above to find δy		M1
		$\delta y = 18x\delta x + 9(\delta x)^2 - 8\delta x$		A1
		Dividing by δx and letting $\delta x \rightarrow 0$		M 1
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \lim_{\delta x \to 0} \frac{\delta y}{\delta x} = 18x - 8$	(c.a.o.)	A1

(b)
$$\underline{dy} = 3 \times (-6) \times x^{-7} - 4 \times \frac{5}{3} \times x^{2/3}$$
 B1 B1

8. (a) Use of
$$f(3) = 0$$
 M1
 $27p - 117 - 57 + 12 = 0 \Rightarrow p = 6$ (convincing) A1
Special case
Candidates who assume $p = 6$ and show $f(3) = 0$ are awarded B1
(b) $f(x) = (x - 3)(6x^2 + ax + b)$ with one of a, b correct M1

$$f(x) = (x - 3)(6x^{2} + ax + b) \text{ with one of } a, b \text{ correct} \qquad \text{MI}$$

$$f(x) = (x - 3)(6x^{2} + 5x - 4) \qquad \text{A1}$$

$$f(x) = (x - 3)(2x - 1)(3x + 4) \quad \text{(f.t. only } 6x^{2} - 5x - 4 \text{ in above line)} \quad \text{A1}$$

$$\text{Roots are } x = 3, \frac{1}{2}, -\frac{4}{3} \qquad \text{(f.t. for factors } 2x \pm 1, 3x \pm 4) \qquad \text{A1}$$

Special case

Candidates who find one of the remaining factors, (2x - 1) or (3x + 4), using e.g. factor theorem, are awarded B1 **9.** (*a*)

Concave up curve and <i>y</i> -coordinate of minimum $=$ -3	B1
x-coordinate of minimum $= -4$	B 1
Both points of intersection with x-axis	B 1

(*b*) **Either:**

Any graph of the form y = af(x) (with $a \neq 0$) will intersect the *x*-axis at (-6, 0) and (2, 0) and thus not pass through the origin. **Or:** $f(0) \neq 0$ and since $a \neq 0$, $af(0) \neq 0$. Thus any graph of the form

y = af(x) will not pass through the origin. E1

10.	(a)	L = x + 2y			
		800 = xy	(both equations)		M1
		L = x + 1600		(convincing)	A1
		X			
	<i>(b)</i>	$\underline{\mathrm{d}L} = 1 + 1600 \times (-1)$	$\times x^{-2}$		B1
		dx			
		Putting derived <u>dL</u> = ()		M1
		dx			
		x = 40, (-40)		(f.t. candidate's <u>dL</u>)	A1
				dx	
		Stationary value of L	at $x = 40$ is 80	(c.a.o)	A1
		A correct method for	finding nature of the s	stationary point yieldin	g a
		minimum value (for <i>x</i>	x > 0)		B1

0·111111111 0·1709352011

2	0.2329431339		
2.5	0.2969522777		
3	0.3628469322	(5 values correct)	B2
(If B2 not awarded	, award B1 for either 3	3 or 4 values correct)	
Correct formula with $h = 0$.	5		M1
$I \approx 0.5 \times \{0.11111111111 +$	0.3628469322 +		
2 2(0.17	709352011 + 0.23294	31339 + 0.2969522777)}
$I \approx 1.875619269 \times 0.5 \div 2$			
$I \approx 0.4689048172$			
$I \approx 0.4689$		(f.t. one slip)	A1
Special case for candidates	who put $h = 0.4$		
1	0.1111111111		
1.4	0.1587880562		
1.8	0.2078915826		
$2 \cdot 2$	0.2583141854		
2.6	0.3099833063		
3	0.3628469322	(all values correct)	B1
Correct formula with $h = 0$.	4		M1
$I \approx 0.4 \times \{0.11111111111 + 0.1111111111111111111111$	$) \cdot 3628469322 + 2(0 \cdot 1)$	587880562 + 0.207891	5826
2	+ 0.2583	141854 + 0.309983306	3)}
$I \approx 2.343912304 \times 0.4 \div 2$			
$I \approx 0.4687824609$			
$I \approx 0.4688$		(f.t. one slip)	A1

Note: Answer only with no working shown earns 0 marks

1.

1 1·5 2.

(a)
$$4(1 - \sin^{2}\theta) - 2\sin^{2}\theta - \sin\theta + 8 = 0,$$
(correct use of $\cos^{2}\theta = 1 - \sin^{2}\theta$) M1
An attempt to collect terms, form and solve quadratic equation
in sin θ , either by using the quadratic formula or by getting the
expression into the form $(a \sin \theta + b)(c \sin \theta + d),$
with $a \times c =$ candidate's coefficient of $\sin^{2}\theta$ and $b \times d =$ candidate's
constant ml
 $6\sin^{2}\theta + \sin\theta - 12 = 0 \Rightarrow (2\sin\theta + 3)(3\sin\theta - 4) = 0$
 $\Rightarrow \sin\theta = -\frac{3}{2}, \sin\theta = \frac{4}{3}$ (c.a.o.) A1
 $-1 \le \sin\theta \le 1 \Rightarrow$ no such θ can exist
(f.t. only if candidate has 2 real values for sin θ , **neither** of which
satisfies $-1 \le \sin\theta \le 1$) E1
(b) $2x - 75^{\circ} = -31^{\circ}, 211^{\circ}, 329^{\circ},$ (one value) B1
 $x = 22^{\circ}, 143^{\circ}$ B1 B1
Note: Subtract (from final two marks) 1 mark for each additional root
in range, ignore roots outside range.
(c) $4 \sin \phi + 7 \sin \phi \cos \phi = 0$ or $4 \tan \phi + 7 \tan \phi \cos \phi = 0$
or $\sin \phi \left[\frac{4}{\cos \phi} + 7\right] = 0$ M1
 $\sin \phi = 0$ (or $\tan \phi = 0$), $\cos \phi = -\frac{4}{7}$ (both values) A1
 $\phi = 0^{\circ}, 180^{\circ}$ (both values) A1
 $\phi = 124 \cdot 85^{\circ}$ (c.a.o.) A1
Note: Subtract a maximum of 1 mark for each additional root in range
for each branch, ignore roots outside range.
(a) $\frac{\sin ACB}{2} = \frac{\sin 25^{\circ}}{12}$
(substituting the correct values in the correct places in the sin rule) M11
 $ACB = 42^{\circ}, 138^{\circ}$ (both values) A1

(b) (i)
$$BAC + 25^{\circ} + 138^{\circ} = 180^{\circ}$$

(f.t. either of candidate's values for ACB) M1
 $B\hat{A}C = 17^{\circ}$ (f.t. candidate's obtuse value for ACB) A1
(ii) Area of triangle $ABC = \frac{1}{2} \times 19 \times 12 \times \sin 17^{\circ}$
(substituting 19, 12 and candidate's derived value for $B\hat{A}C$ in
the correct places in the area formula) M1

Area of triangle $ABC = 33.33 \text{ cm}^2$. (c.a.o.) A1

3.

4. (a) (i) nth term =
$$4 + 6(n - 1) = 4 + 6n - 6 = 6n - 2$$
 (convincing) B1
(ii) $S_n = 4 + 10 + \ldots + (6n - 8) + (6n - 2)$
 $S_n = (6n - 2) + (6n - 8) + \ldots + 10 + 4$
Reversing and adding M1
Either:
 $2S_n = (6n + 2) + (6n + 2) + \ldots + (6n + 2) + (6n + 2)$
Or:
 $2S_n = (6n + 2) + \ldots$ (n times) A1
 $2S_n = n(6n + 2)$
 $S_n = n(3n + 1)$ (convincing) A1
(b) (i) $a + 9d = 4 \times (a + 4d)$ B1

(b) (i)
$$a + 9d = 4 \times (a + 4d)$$
 B1
 $3a + 7d = 0$
 $15 \times (2a + 14d) = 210$ B1

$$\frac{15}{2} \times (2a + 14d) = 210$$
B1

$$a + 7d = 14$$

An attempt to solve the candidate's two derived linear equations simultaneously by eliminating one unknown M1 d = 3, a = -7 (c.a.o.) A1 $-7 + (k-1) \times 3 = 200$

(ii)
$$-7 + (k-1) \times 3 = 200$$

(f.t. candidate's derived values for *a* and *d*) M1
 $k = 70$ (c.a.o.) A1

5. (a)
$$r = 2304 = 4$$
 (c.a.o.) B1
 $t_5 = \frac{576}{4^3}$ (f.t. candidate's value for r) M1

$$t_5 = 9$$
 (c.a.o.) A1

(b) (i)
$$ar^2 = 24$$
 B1
 $ar + ar^2 + ar^3 = -56$ B1
An attempt to solve the candidate's equations simultaneously
by eliminating a M1
 $\frac{r^2}{r + r^2 + r^3} = -\frac{24}{56} \Rightarrow 3r^2 + 10r + 3 = 0$ (convincing) A1
(ii) $r = -\frac{1}{3}$ ($r = -3$ discarded, c.a.o.) B1
 $a = 216$
(f.t. candidate's derived value for r , provided $|r| < 1$) B1
 $S_{\infty} = \frac{216}{1 - (-\frac{1}{3})}$ (use of formula for sum to infinity)
(f.t. candidate's derived values for r and a) M1
 $S_{\infty} = 162$ (f.t. candidate's derived values for r and a) A1

6. (a)
$$3 \times \frac{x^{1/2}}{1/2} - 6 \times \frac{x^{7/3}}{7/3} + c$$
 B1, B1
(b) (i) $6 + 5x - x^2 = 4x$ M1
An attempt to rewrite and solve quadratic equation
in x, either by using the quadratic formula or by getting the
expression into the form $(x + a)(x + b)$, with $a \times b$ = candidate's
constant m1
 $(x + 2)(x - 3) = 0 \Rightarrow x = 3$ (c.a.o.) A1
(ii) Use of integration to find the area under the curve M1
 $\int 6 dx = 6x$, $\int 5x dx = \frac{5x^2}{2}$, $\int x^2 dx = (1/3)x^3$,
(correct integration) B1

Correct method of substitution of candidate's limits m1

$$[6x + (5/2)x^{2} - (1/3)x^{3}]_{-1}^{3}$$

= (18 + 45/2 - 9) - (-6 + 5/2 - (-1/3)) = 104/3

Use of a correct method to find the area of the triangle (f.t. candidate's coordinates for A)

Use of -1 and candidate's value for x_A as limits and trying to find total area by subtracting area of triangle from area under curve m1

Shaded area =
$$104/3 - 18 = 50/3$$
 (c.a.o.) A1

7. (a) Let
$$p = \log_a x$$
, $q = \log_a y$
Then $x = a^p$, $y = a^q$ (the relationship between log and power) B1
 $\frac{x}{y} = \frac{a^p}{a^q} = a^{p-q}$ (the relationship between log and power)
 $\log_a x/y = p - q$ (the relationship between log and power)
 $\log_a x/y = p - q = \log_a x - \log_a y$ (convincing) B1

(b)
$$\log_a(6x^2 + 9x + 2) - \log_a x = \log_a \left[\frac{6x^2 + 9x + 2}{x}\right]$$
 (subtraction law)

$$\frac{4 \log_a 2 = \log_a 2^4}{6x^2 + 9x + 2} = 2^4$$
 (power law) B1
(removing logs) M1

An attempt to solve quadratic equation with three terms in *x*, either by using the quadratic formula or by getting the expression into the form (ax + b)(cx + d), with $a \times c$ = candidate's coefficient of x^2 and $b \times d$ = candidate's constant m1 $6x^2 - 7x + 2 = 0 \Rightarrow (2x - 1)(3x - 2) = 0 \Rightarrow x = \frac{1}{2}, \frac{2}{3}$

(both values, c.a.o.) A1

M1

B1

Note: Answer only with no working earns 0 marks

8.	(<i>a</i>)	(i) (ii)	A(3, -1) A correct method for t Radius = $\sqrt{29}$	finding radius (cor	wincing)	B1 M1 A1
	<i>(b)</i>	Eithe	r:			
		RQ =	$\sqrt{18}$ or $RP = \sqrt{98}$ (o.e.))		B1
		Corre	ct substitution of candid	late's values in an e	xpression for sin	Q,
		$\cos Q$	or $\tan Q$		-	M1
		PQR :	= 66·8°		(c.a.o)	A1
		Or:				
		RQ =	$\sqrt{18}$ or $RP = \sqrt{98}$			B1
		Corre	ct substitution of candid	late's values in the c	cos rule to find c	os Q
						M1
		PQR :	= 66·8°		(c.a.o)	A1
	(<i>c</i>)	$AT^2 =$	65 (1	f.t. candidate's coor	dinates for A)	B1
		Use o	$f ST^2 = AT^2 - AS^2 \text{ with}$	candidate's derived	value for <i>AT</i>	M1
		ST =	5		(f.t. one slip)	A1

9. Area of sector $AOB = \frac{1}{2} \times r^2 \times 2.6$ Area of triangle $AOB = \frac{1}{2} \times r^2 \times \sin 2.6$ Area of minor segment $= \frac{1}{2} \times r^2 \times 2.6 - \frac{1}{2} \times r^2 \times \sin 2.6 = 1.0422r^2$ Use of a valid method for finding the area of the major segment Area of major segment $= 2.099r^2$ \Rightarrow area of major segment $\approx 2 \times$ area of minor segment (convincing) A1 **C3**

1. (*a*) 0

(a) 0 0

$$\pi/9$$
 -0.062202456
 $2\pi/9$ -0.266515091
 $\pi/3$ -0.693147181
 $4\pi/9$ -1.750723994 (5 values correct) B2
(If B2 not awarded, award B1 for either 3 or 4 values correct)
Correct formula with $h = \pi/9$ M1
 $I \approx \frac{\pi/9}{3} \times \{0 + (-1.750723994) + 4[(-0.062202456) + (-0.693147181)] + 2(-0.266515091)\}$
 $I \approx -5.305152724 \times (\pi/9) \div 3$
 $I \approx -0.617282549$
 $I \approx -0.6173$ (f.t. one slip) A1

Note: Answer only with no working shown earns 0 marks

 $\int_{0}^{4\pi9} \ln(\sec x) \, dx \approx 0.6173 \qquad (f.t. \text{ candidate's answer to } (a))$ (*b*) **B**1 2.

(a)

(b)

$$7 \operatorname{cosec}^{2} \theta - 4 (\operatorname{cosec}^{2} \theta - 1) = 16 + 5 \operatorname{cosec} \theta$$
(correct use of $\operatorname{cot}^{2} \theta = \operatorname{cosec}^{2} \theta - 1$) M1
An attempt to collect terms, form and solve quadratic equation
in cosec θ , either by using the quadratic formula or by getting the
expression into the form $(a \operatorname{cosec} \theta + b)(c \operatorname{cosec} \theta + d)$,
with $a \times c = \operatorname{candidate's coefficient} of \operatorname{cosec}^{2} \theta$ and $b \times d = \operatorname{candidate's}$
constant
 $3 \operatorname{cosec}^{2} \theta - 5 \operatorname{cosec} \theta - 12 = 0 \Rightarrow (\operatorname{cosec} \theta - 3)(3 \operatorname{cosec} \theta + 4) = 0$
 $\Rightarrow \operatorname{cosec} \theta = 3$, $\operatorname{cosec} \theta = -\frac{4}{3}$
 $\Rightarrow \sin \theta = \frac{1}{3}$, $\sin \theta = -\frac{3}{4}$ (c.a.o.) A1
 $\theta = 19.47^{\circ}$, 160.53° B1
 $\theta = 311.41^{\circ}$, 228.59° B1 B1
Note: Subtract 1 mark for each additional root in range for each
branch, ignore roots outside range.
 $\sin \theta = +, -, \text{ f.t. for 3 marks, } \sin \theta = -, -, \text{ f.t. for 2 marks}$
 $\sin \theta = +, +, \text{ f.t. for 1 mark}$
 $\sec \phi \ge 1, \operatorname{cosec} \phi \ge 1$ and thus $4 \sec \phi + 3 \operatorname{cosec} \phi \ge 7$ E1

3. (a)
$$\underline{d}(x^3) = 3x^2$$
 $\underline{d}(1) = 0$ $\underline{d}(\pi^2/4) = 0$ B1
 dx dx dx

$$\frac{d(2x\cos y) = 2x(-\sin y)\frac{dy}{dx} + 2\cos y$$

$$dx$$

$$d(y^{2}) = 2y dy$$
B1
B1
B1
B1

$$\frac{dy}{dx} = \frac{3}{2 - \pi}$$
(c.a.o.) B1

(b)
$$\frac{d^2y}{dx^2} = \frac{d}{dx}(x^2y) = x^2\frac{dy}{dx} + 2xy$$
B1
Substituting x^2y for dy in candidate's derived expression for d^2y M1

$$\frac{d^2y}{dx^2} = x^2(x^2y) + 2xy = x^4y + 2xy \quad (o.e.) \quad (c.a.o.) \quad A1$$

4. (a) candidate's x-derivative =
$$\frac{1}{1+t^2}$$
 B1

candidate's y-derivative =
$$\frac{1}{t}$$
 B1

$$\frac{dy}{dx} = \frac{candidate's \ y-derivative}{candidate's \ x-derivative}$$

$$\frac{dy}{dx} = \frac{1+t^2}{t}$$
A1

(b)
$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\frac{\mathrm{d}y}{\mathrm{d}x} \right] = -t^{-2} + 1$$
 (o.e.) B1

Use of
$$\frac{d^2y}{dx^2} = \frac{d}{dt} \left[\frac{dy}{dx} \right] \div$$
 candidate's *x*-derivative M1

$$\frac{d^2 y}{dx^2} = (-t^{-2} + 1)(1 + t^2)$$
 (o.e.) (f.t. one slip) A1

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 0 \Longrightarrow t = 1 \tag{c.a.o.} A1$$

$$\frac{d^2y}{dx^2} = 0 \Longrightarrow x = \frac{\pi}{4}$$
 (f.t. candidate's derived value for t) A1

5. (*a*)

Correct shape for $y = \cos^{-1}x$ B1A straight line with negative y-intercept and positive gradient1intersecting once with $y = \cos^{-1}x$ in the first quadrant.B1

(b)
$$x_0 = 0.4$$

 $x_1 = 0.431855896$ (x_1 correct, at least 4 places after the point) B1
 $x_2 = 0.424849379$
 $x_3 = 0.426400166$
 $x_4 = 0.426057413 = 0.4261$ (x_4 correct to 4 decimal places) B1
Let $h(x) = \cos^{-1}x - 5x + 1$
An attempt to check values or signs of $h(x)$ at $x = 0.42605$,
 $x = 0.42615$ M1
 $h(0.42605) = 4.24 \times 10^{-4} > 0$, $h(0.42615) = -1.86 \times 10^{-4} < 0$ A1
Change of sign $\Rightarrow \alpha = 0.4261$ correct to four decimal places A1

6. (a)

(i)

$$\underbrace{bx} \qquad (\text{including } a = 1, b = 0) \qquad M1$$

$$\frac{dy}{dx} = \frac{a+bx}{4x^2-3x-5}$$
 (including $a = 1, b = 0$) M1
$$\frac{dy}{dx} = \frac{8x-3}{4x^2-3x-5}$$
 A1

(ii)
$$\frac{dy}{dx} = e^{\sqrt{x}} \times f(x) \qquad (f(x) \neq 1, 0) \qquad M1$$
$$\frac{dy}{dx} = e^{\sqrt{x}} \times \underline{1} x^{-1/2} \qquad A1$$

(iii)
$$\frac{dx}{dx} = \frac{2}{(a-b\sin x) \times m\cos x - (a+b\sin x) \times k\cos x}{(a-b\sin x)^2}$$

$$(m=+b, k=+b) \qquad M1$$

$$(m = \pm b, k = \pm b) \qquad \text{MI}$$

$$\frac{dy}{dx} = \frac{(a - b\sin x) \times b\cos x - (a + b\sin x) \times (-b)\cos x}{(a - b\sin x)^2} \qquad \text{A1}$$

$$\frac{dx}{dy} = \frac{2ab\cos x}{(a-b\sin x)^2}$$
A1

(b)
$$\frac{d}{dx} (\cot x) = \frac{d}{dx} (\tan x)^{-1} = (-1) \times (\tan x)^{-2} \times f(x) \quad (f(x) \neq 1, 0) \quad M1$$

$$\frac{d}{dx} \frac{d}{dx} (\tan x)^{-1} = (-1) \times (\tan x)^{-2} \times \sec^2 x \qquad A1$$

$$\frac{d}{dx} \frac{d}{dx} (\tan x)^{-1} = -\csc^2 x \qquad (convincing) \quad A1$$

(i)

$$\int (\frac{7x^2 - 2}{x}) dx = \int 7x dx - \int \frac{2}{x} dx$$

Correctly rewriting as two terms and an attempt to integrate

$$\int (\frac{7x^2 - 2}{x}) \, dx = \frac{7}{2}x^2 - 2\ln x + c$$
 A1 A1

(ii)
$$\int \sin(\frac{2x}{3} - \pi) \, dx = k \times \cos(\frac{2x}{3} - \pi) + c$$

(k = -1, -³/₂, ³/₂, -²/₃) M1
$$\int \sin(\frac{2x}{3} - \pi) \, dx = -\frac{3}{2} \times \cos(\frac{2x}{3} - \pi) + c$$
 A1

Note: The omission of the constant of integration is only penalised once.

(b)
$$\int (5x - 14)^{-1/4} dx = \frac{k \times (5x - 14)^{3/4}}{3/4}$$
 (k = 1, 5, ¹/₅) M1

$$\int (5x - 14)^{-1/4} dx = \frac{1}{5} \times \frac{(5x - 14)^{3/4}}{3/4}$$
 A1

A correct method for substitution of the correct limits limits in an expression of the form $m \times (5x - 14)^{3/4}$ M1

$$\int_{3}^{6} (5x - 14)^{-1/4} dx = \frac{28}{15} \qquad (= 1.867)$$

(f.t. only for solutions of
$$\frac{28}{3}$$
 (= 9.333) and $\frac{140}{3}$ (= 46.667)
from $k = 1$, $k = 5$ respectively) A1

Note: Answer only with no working shown earns 0 marks

<i>(a)</i>	Trying to solve either $3x - 5 \le 1$ or $3x - 5 \ge -1$		
	$3x - 5 \le 1 \Longrightarrow x \le 2$		
	$3x-5 \ge -1 \Longrightarrow x \ge \frac{4}{3}$	(both inequalities)	A1
	Required range: $\frac{4}{3} \le x \le 2$	(f.t. one slip)	A1
	(<i>a</i>)	(a) Trying to solve either $3x - 5 \le 1$ or $3x - 5 \le 1 \Rightarrow x \le 2$ $3x - 5 \ge -1 \Rightarrow x \ge \frac{4}{3}$ Required range: $\frac{4}{3} \le x \le 2$	(a) Trying to solve either $3x - 5 \le 1$ or $3x - 5 \ge -1$ $3x - 5 \le 1 \Longrightarrow x \le 2$ $3x - 5 \ge -1 \Longrightarrow x \ge \frac{4}{3}$ (both inequalities) Required range: $\frac{4}{3} \le x \le 2$ (f.t. one slip)

Alternative mark scheme

$(3x-5)^2 \le 1$		
(squaring both sides, forming a	nd trying to solve quadratic)	M 1
Critical values $x = \frac{4}{3}$ and $x = 2$		A1
Required range: $4/3 \le x \le 2$ (1)	f.t. one slip in critical values)	A1

(b)
$$\frac{4}{3} \le 1/y \le 2$$
 (f.t. candidate's $a \le x \le b, a > 0, b > 0$) M1
 $\frac{1}{2} \le y \le \frac{3}{4}$ (f.t. candidate's $a \le x \le b, a > 0, b > 0$) A1

Correct shape, including the fact that the y-axis is an asymptote fory = f(x) at $-\infty$ B1y = f(x) cuts x-axis at (1, 0)B1Correct shape, including the fact that x = -4 is an asymptote forB1 $y = \frac{2}{3}f(x+4)$ at $-\infty$ B1 $y = \frac{2}{3}f(x+4)$ cuts x-axis at (-3, 0) (f.t. candidate's x-intercept for f(x))B1The diagram shows that the graph of y = f(x) is steeper than the graph ofB1 $y = \frac{2}{3}f(x+4)$ in the first quadrantB1

10. (a)Choice of h, k such that
$$h(x) = k(x) + c, c \neq 0$$
M1Convincing verification of the fact that $h'(x) = k'(x)$ A1

(b) (i)
$$y-3 = 2 \ln (4x + 5)$$
 B1
An attempt to express candidate's equation as an exponential
equation M1
 $x = (e^{(y-3)/2} - 5)$ (c.a.o.) A1
 $f^{-1}(x) = (e^{(x-3)/2} - 5)$

$$gf(x) = e^{3}(4x+5)^{2}$$
 (c.a.o.) B1

1. (a)
$$f(x) \equiv \frac{A}{(x+3)^2} + \frac{B}{(x+3)} + \frac{C}{(x-1)}$$
 (correct form) M1
 $2x^2 + 5x + 25 \equiv A(x-1) + B(x+3)(x-1) + C(x+3)^2$
(correct clearing of fractions and genuine attempt to find coefficients)
 $A = -7, C = 2, B = 0$ (all three coefficients correct) A2
If A2 not awarded, award A1 for at least one correct coefficient

(b)
$$\int f(x) \, dx = \frac{7}{(x+3)} + 2 \ln (x-1)$$
 B1 B1
(f.t. candidate's values for A, B, C)
$$\int_{3}^{10} f(x) \, dx = \left[\frac{7}{13} + 2 \ln 9\right] - \left[\frac{7}{6} + 2 \ln 2\right] = 2.38$$
 (c.a.o.) B1

Note: Answer only with no working earns 0 marks

2. (a)
$$4x^{3} + 3x^{2} \frac{dy}{dx} + 6xy - 4y \frac{dy}{dx} = 0$$

$$\begin{cases} 3x^{2} \frac{dy}{dx} + 6xy \\ dx \end{cases}$$

$$\begin{bmatrix} 3x^{2} \frac{dy}{dx} + 6xy \\ dx \end{bmatrix}$$

$$\begin{bmatrix} 4x^{3} - 4y \frac{dy}{dx} \\ dx \end{bmatrix}$$
B1

$$\frac{dy}{dx} = \frac{4x^3 + 6xy}{4y - 3x^2}$$
 (convincing) B1

(b)
$$4y - 3x^2 = 0$$
 M1
Either: Substituting $3x^2$ for y in the equation of C and an
attempt to collect terms m1
 $x^4 = 16 \Rightarrow x = (\pm) 2$ A1
 $y = 3$ (for both values of x)
(f.t. $x^4 = a, a \neq 16$, provided both x values are checked)
A1
Or: Substituting $4y$ for x^2 in the equation of C and an
attempt to collect terms m1
 $y^2 = 9 \Rightarrow y = (\pm) 3$ A1
 $y = 3 \Rightarrow x = \pm 2$ (ft $y^2 = b, b \neq 9$) A1

$$y = 3 \Rightarrow x = \pm 2$$
 (f.t. $y^2 = b, b \neq 9$) A1

3. $\tan x + \tan 45^\circ = 8 \tan x$ *(a)* $1 - \tan x \tan 45^\circ$ (correct use of formula for $tan(x + 45^{\circ})$) **M**1 Use of tan $45^\circ = 1$ and an attempt to form a quadratic in tan *x* by cross multiplying and collecting terms **M**1 $8\tan^2 x - 7\tan x + 1 = 0$ (c.a.o.) A1 Use of a correct method to solve the candidate's derived quadratic in tan x m1 $x = 34.8^{\circ}, 10.2^{\circ}$ (both values) (f.t. one slip in candidate's derived quadratic in tan x provided all three method marks have been awarded) A1 *(b)* (i) R = 7**B**1 Correctly expanding $\sin(\theta - \alpha)$, correctly comparing coefficients and using either $7 \cos \alpha = \sqrt{13}$ or $7 \sin \alpha = 6$ or $\tan \alpha = 6$ to find α √13 (f.t. candidate's value for R) M1 $\alpha = 59^{\circ}$ (c.a.o) A1 $\sin\left(\theta-\alpha\right)=-\frac{4}{7}$ (ii) (f.t. candidate's values for R, α) **B**1 $\theta - 59^{\circ} = -34.85^{\circ}, 214.85^{\circ}, 325.15^{\circ},$ (at least one value, f.t. candidate's values for R, α) **B**1 $\theta = 24 \cdot 15^\circ, 273 \cdot 85^\circ$ **B**1 (c.a.o.)

$$V = \pi \int_{0}^{a} (mx)^{2} dx$$
 M1

$$\int (mx)^2 dx = \frac{m^2 x^3}{3}$$
B1

$$V = \pi \frac{m^2 a^3}{3}$$
 (c.a.o.) A1

(b) (i) Substituting <u>b</u> for m in candidate's derived expression for V a $V = \pi \frac{b^2 a}{3}$ (c.a.o.) A1

(ii) This is the volume of a cone of (vertical) height a and (base) radius b E1

5.
$$\begin{pmatrix} 1+x\\8 \end{pmatrix}^{-1/2} = 1 - \frac{x}{16} + \frac{3x^2}{512}$$
 $\begin{pmatrix} 1-x\\16 \end{pmatrix}$ B1
 $\begin{pmatrix} \frac{3x^2}{512} \end{pmatrix}$ B1
 $\begin{pmatrix} x\\512 \end{pmatrix}$ B1

$$|x| < 8 \text{ or } -8 < x < 8$$
 B1

 $2\sqrt{2} \approx 1 - 1 + 3$
 (f.t. candidate's coefficients)
 B1

 3
 16
 512
 (f.t. candidate's coefficients)
 B1

 Either:
 $\sqrt{2} \approx \frac{1449}{1024}$
 (c.a.o.)
 (c.a.o.)

 Or:
 $\sqrt{2} \approx \frac{2048}{1449}$
 (c.a.o.)
 B1

6.	<i>(a)</i>	(i)	candidate's x-derivative = $2at$	
			candidate's y-derivative = $2a$ (at least one term	n correct)
			and use of	
			dy = candidate's y-derivative	M1
			dx candidate's x-derivative	
			$\underline{dy} = \underline{2a} = \underline{1}$	
			dx 2at t	
			Gradient of tangent at $P = \underline{1}$ (c.a.o.)) A1
			p	
		(ii)	Equation of tangent at P: $y - 2ap = \underline{1}(x - ap^2)$	
			p	
			(f.t. candidate's expression for dy)	m1
			dx	
			Equation of tangent at P: $py = x + ap^2$	A1
	$\langle 1 \rangle$	(*)		D 1
	(<i>b</i>)	(1)	Gradient $PQ = \frac{2ap - 2aq}{2}$	BI
			ap - aq	D1
			Use of $ap - aq = a(p+q)(p-q)$ Cradient $PQ = -2$	DI D1
			Gradient $PQ = \underline{2}$ (c.a.o.)	DI
		(;;)	p + q As the point O approaches P PO becomes a tangent	
		(11)	As the point Q approaches T, TQ becomes a tangent Limit (gradient PQ) = $2 - 1$	E 1
			$\lim_{q \to p} r(y) = \frac{2}{2p} - \frac{1}{2}$	ĽI
			2p p	

7. (a)
$$\int \frac{x^2}{(12-x^3)^2} dx = \int \frac{k}{u^2} du$$
 $(k = \frac{1}{3}, -\frac{1}{3}, 3 \text{ or } -3)$ M1

$$\int \frac{a}{u^2} \frac{du}{du} = a \times \frac{u^{-1}}{-1}$$
B1

Either: Correctly inserting limits of 12, 4 in candidate's bu^{-1} Correctly inserting limits of 0, 2 in candidate's $b(12 - x^3)^{-1}$ or: **M**1

$$\int_{0}^{2} \frac{x^{2}}{(12-x^{3})^{2}} dx = \frac{1}{18}$$
 (c.a.o.) A1

Note: Answer only with no working earns 0 marks

(b) (i)
$$u = x \Rightarrow du = dx$$
 (o.e.) B1
 $dv = \cos 2x \, dx \Rightarrow v = \underline{1} \sin 2x$ (o.e.) B1

0

$$\int x \cos 2x \, dx = x \times \frac{1}{2} \sin 2x - \int \frac{1}{2} \sin 2x \times dx \qquad M1$$

$$\int_{0}^{\infty} x \cos 2x \, dx = \frac{1}{2} x \sin 2x + \frac{1}{2} \cos 2x + c \qquad (c.a.o.) \qquad A1$$

(ii)
$$\int x \sin^2 x \, dx = \int x \left[\frac{k}{2} - \frac{m}{2} \cos 2x \right] \, dx \quad (\text{o.e.})$$
$$(k = \mathbf{1}, -1, m = \mathbf{1}, -1) \qquad M1$$
$$\int x \sin^2 x \, dx = \frac{1}{2} \int x \, dx - \frac{1}{2} \int x \cos 2x \, dx$$
$$\int (x \sin^2 x \, dx = \frac{x^2}{2} - \frac{1}{2} x \sin 2x - \frac{1}{2} \cos 2x + c$$

$$x \sin^2 x \, dx = \frac{x^2}{4} - \frac{1}{4} x \sin 2x - \frac{1}{8} \cos 2x + c$$
(f.t. only candidate's answer to (b)(i)) A1

8. (a) (i)
$$AB = -i - 2j + 7k$$
 B1
(ii) Use of $a + \lambda AB$, $a + \lambda(b - a)$, $b + \lambda AB$ or $b + \lambda(b - a)$ to find
vector equation of AB M1
 $r = 5i - j - k + \lambda (-i - 2j + 7k)$ (o.e.)
(f.t. if candidate uses his/her expression for AB) A1

J

 $5 - \lambda = 2 + \mu$ *(b)* $-1 - 2\lambda = -3 + \mu$ $-1+7\lambda = -4-\mu$ (o.e.) (comparing coefficients, at least one equation correct) **M**1 (at least two equations correct) A1 Solving two of the equations simultaneously m1 (f.t. for all 3 marks if candidate uses his/her equation of AB) $\lambda = -1, \mu = 4$ (c.a.o.) A1 (o.e.) Correct verification that values of λ and μ satisfy third equation A1 Position vector of point of intersection is $6\mathbf{i} + \mathbf{j} - 8\mathbf{k}$

9. (a)
$$\frac{dP}{dt} = kP^2$$
 (f.t. one slip) A1
B1

(b)
$$\int \frac{\mathrm{d}P}{P^2} = \int k \,\mathrm{d}t$$
 M1

$$-\frac{1}{P} = kt + c \qquad (\text{o.e.}) \qquad A1$$

$$c = -\frac{1}{A}$$
(c.a.o.) A1

$$-\frac{1}{P} = kt - \frac{1}{A} \Rightarrow kt = \frac{1}{A} - \frac{1}{P} \Rightarrow \frac{1}{k} \left[\frac{P - A}{PA} \right] = t \qquad \text{(convincing) A1}$$

(c)
$$\frac{1}{k} \left[\frac{800 - A}{800A} \right] = 3$$
, $\frac{1}{k} \left[\frac{900 - A}{900A} \right] = 4$ (both equations) B1

An attempt to solve these equations simultaneously by eliminating kM1

$$A = 600$$
 (c.a.o.) A1

10.Assume that 4 is a factor of a + b.
Then there exists an integer c such that a + b = 4c.
Similarly, there exists an integer d such that a - b = 4d.B1
Adding, we have 2a = 4c + 4d.B1
Therefore a = 2c + 2d, an even number, which contradicts the fact that a is
odd.B1

Ques	Solution	Mark	Notes
1	$f(x+h) - f(x) = \frac{1}{(x+h)^2 - (x+h)} - \frac{1}{x^2 - x}$	M1A1	
	$=\frac{x^2 - x - [(x+h)^2 - (x+h)]}{[(x+h)^2 - (x+h)](x^2 - x)}$	A1	
	$=\frac{x^2 - x - [x^2 + 2hx + h^2 - x - h]}{[(x+h)^2 - (x+h)](x^2 - x)}$	A1	
	$= \frac{-2hx - h^2 + h}{[(x+h)^2 - (x+h)](x^2 - x)}$	A1	
	$f'(x) = \frac{\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}}{h}$	M1	
	$= \lim_{h \to 0} \frac{-2x - h + 1}{[(x+h)^2 - (x+h)](x^2 - x)} = \frac{-2x + 1}{(x^2 - x)^2}$	A1	oe
2(a)	The reflection matrix for $y = x$ is		
	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	B1	Allow the use of 3×3 matrices
	The reflection matrix for $y = -x$ is $\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$	B1	
	It follows that $\mathbf{T} = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	M1	Special case B1 for matrices the wrong way round
	$= \begin{vmatrix} -1 & 0 \\ 0 & -1 \end{vmatrix}$ cao	A1	Do not award this A1 for a 3×3
(b)	T therefore corresponds to a rotation through 180° about the origin. cao	B 1	matrix
3 (a)	$\frac{2+i}{1-i} = \frac{(2+i)(1+i)}{(1-i)(1+i)}$	M1	
	$=\frac{2+3i+i^{2}}{1-i+i-i^{2}}$	A1	
	$=\frac{1}{2}+\frac{3}{2}i$	A1	
	Let $z = x + iy$ so that $\overline{z} = x - iy$ $2(x + iy) = i(x - iy) = \frac{1}{2} + \frac{3}{2}i$	M1	FT their above result
	$2(x + iy) - i(x - iy) = \frac{1}{2} + \frac{1}{2}i$ $2x - y = \frac{1}{2}i + 2y - x = \frac{3}{2}i$	A1	
	$\begin{bmatrix} 2x - y - \frac{1}{2}, 2y - x - \frac{1}{2} \\ 5 & 7 & (5 & 7.) \end{bmatrix}$		
	$x = \frac{-1}{6}; y = \frac{-1}{6} \left(\text{so } z = \frac{-1}{6} + \frac{-1}{6} \right)$	A1	

FP1

(b)	$Mod = \sqrt{(-20)^2 + (-21)^2} = 29$	B1	
	$\tan^{-1}\left(\frac{21}{20}\right) = 0.81 \text{ or } 46.4^{\circ} \text{ si}$	B 1	
	Arg = $0.81 + \pi = 3.95$ or $46.4^{\circ} + 180^{\circ} = 226.4^{\circ}$	B 1	Accept – 2.33 or – 133.6°
4 (a)	$det(\mathbf{M}) = 1(10-1) + 2(1-4) + 1(2-5)$	M1	
	= 0	Al Al	
	W is mererore singular.		
(b)(i)	Using row operations,	M1	
	$\begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} x \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix}$		
	$\begin{vmatrix} 0 & 1 & -1 \end{vmatrix} y = \begin{vmatrix} -2 \end{vmatrix}$	A1	
	$\begin{bmatrix} 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} z \end{bmatrix} \begin{bmatrix} 2 - \mu \end{bmatrix}$	Al	
	It follows that $-2 - 2 - \mu$ so $\mu = 4$	A 1	
(ii)	$-2 - 2 - \mu$ so $\mu - 4$	AI	
	Let $z = \alpha$.	M1	
	Then $y = \alpha - 2$.	A1	
	and $x = 6 - 3\alpha$.	AI	
		2.61	A 11 /
5	Let the roots be a, ar, ar^2 .	MI	Allow a/r , a , ar
	Then, $a + ar + ar^2 = 4$		
	$a^2r + a^2r^2 + a^2r^3 = -8$	A1	
	Dividing,	M1	
	ar = -2	A1 A1	
	$k = -a^{2}r^{2} = 8$		
6(a)	$\begin{bmatrix} 3 & 2 & 4 \end{bmatrix} \begin{bmatrix} 3 & -2 & 0 \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \end{bmatrix}$		
	$\begin{vmatrix} 3 & 3 & 6 \end{vmatrix} \begin{vmatrix} -3 & -1 & 6 \end{vmatrix} = \begin{vmatrix} 0 & 3 & 0 \end{vmatrix}$	B2	Award B1 if 1 error, B0 more
			than I error
(b)	It follows that		
	$\begin{bmatrix} 1 & 3 & -2 & 0 \end{bmatrix}$		
(c)	$A^{-1} = \frac{1}{3}B \mid = \frac{1}{3} \mid -3 \mid -1 \mid 6 \mid$	M1A1	M1A0 for 3 B
	$\left(\begin{array}{cc} 1 \\ 0 \end{array} \right) \left(\begin{array}{cc} 2 \\ -3 \end{array} \right)$		
	$\begin{bmatrix} x \end{bmatrix} \begin{bmatrix} 3 & -2 & 0 \end{bmatrix} \begin{bmatrix} 14 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix}$		
	$y = \frac{1}{3} - 3 - 1 - 6 = 18 = 2$	M1A1	FT their A^{-1}
	$\begin{bmatrix} z \end{bmatrix} \begin{bmatrix} 0 & 2 & -3 \end{bmatrix} \begin{bmatrix} 11 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$		
(c)	$A^{-1} = \frac{1}{3}B \begin{pmatrix} 3 & -2 & 0 \\ -3 & -1 & 6 \\ 0 & 2 & -3 \end{pmatrix}$ $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{3}\begin{bmatrix} 3 & -2 & 0 \\ -3 & -1 & 6 \\ 0 & 2 & -3 \end{bmatrix}\begin{bmatrix} 14 \\ 18 \\ 11 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}$	M1A1 M1A1	M1A0 for 3 B FT their A^{-1}

7(a)	Let		
	2 $A = B = A(n+2)+Bn$		
	$\frac{1}{n(n+2)} = \frac{1}{n} + \frac{1}{n+2} = \frac{1}{n(n+2)}$	M1	
	A = 1: B = -1		
		A1A1	
	$\left(\frac{2}{2} = \frac{1}{2} - \frac{1}{2} \right)$		
	$\begin{pmatrix} n(n+2) & n & (n+2) \end{pmatrix}$		
	$s - 1 - \frac{1}{2}$		
(b)	$S_n = 1$ $-\frac{1}{3}$		
	1 1		
	$\frac{1}{2}$ $-\frac{1}{4}$		
	1 1		
	$\frac{-}{3}$ $\frac{-}{5}$		
		M1	
		A1	
	$\frac{1}{(1-1)} - \frac{1}{(1-1)}$		
	(n-1) $(n+1)$		
	$\frac{1}{2}$ $-\frac{1}{2}$		
	n $(n+2)$		
	1, 1 1 1		
	$=1+\frac{1}{2}-\frac{1}{(n+1)}-\frac{1}{(n+2)}$	A1	
	3(n+1)(n+2) - 2(n+2) - 2(n+1)		
	$=\frac{3(n+1)(n+2)-2(n+2)-2(n+1)}{2(n+1)(n+2)}$	A1	
	2(n+1)(n+2)		
	$=\frac{3n^2+5n}{2}$	Λ1	
	2(n+1)(n+2)	AI	
8 (a)			
	$\mathbf{A}^{2} \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix}$		
	$\mathbf{A} = \begin{vmatrix} 2 & 1 \\ 2 & 1 \end{vmatrix} \begin{vmatrix} 2 & 1 \\ 2 & 1 \end{vmatrix} = \begin{vmatrix} 4 & 1 \\ 4 & 1 \end{vmatrix}$	B1	
	$2\mathbf{A} - \mathbf{I} = 2\begin{vmatrix} \mathbf{I} & \mathbf{O} \\ 2 & \mathbf{I} \end{vmatrix} - \begin{vmatrix} \mathbf{I} & \mathbf{O} \\ \mathbf{O} & \mathbf{I} \end{vmatrix} = \begin{vmatrix} \mathbf{I} & \mathbf{O} \\ \mathbf{I} & \mathbf{I} \end{vmatrix}$	B1	
	Hence equal.		
	METHOD 1		
(0)	INDITION I Let the result be true for $n - k$ is	3	
	Let the result be true for $n = \kappa$, is $\Delta^{k} - k\Delta = (k = 1)\mathbf{I}$	M1	
	Consider for $n = k + 1$	M1	
	$\mathbf{A}^{k+1} = k\mathbf{A}^2 - (k-1)\mathbf{A}$	A1	
	$=k(2\mathbf{A}-\mathbf{I})-(k-1)\mathbf{A}$	A1	
	$= (k+1)\mathbf{A} - k\mathbf{I}$	A1	
	Hence true for $n = k \Longrightarrow$ true for $n = k + 1$ and		Award this A1 for a correct
	since trivially true for $n = 1$ (A = A), the result is	A1	concluding statement and correct
	proved by induction.		presentation of proof
			byinduction

	METHOD 2		
	Let the result be true for $n = k$, ie	M1	
	$\mathbf{A}^k = k\mathbf{A} - (k-1)\mathbf{I}$		
	$\begin{bmatrix} 1 & 0 \end{bmatrix}$		
	$= \begin{vmatrix} 2k & 1 \end{vmatrix}$	A1	
	Consider for $n - k + 1$	М1	
	$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix}$	IVII	
	$\mathbf{A}^{k+1} = \begin{bmatrix} 1 & 0 \\ 2l & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$	Δ1	
	$\begin{bmatrix} 2k & l \end{bmatrix} \begin{bmatrix} 2 & l \end{bmatrix}$	AI	
	_ 1 0	A1	
	$\frac{-}{2(k+1)}$ 1		Arriand this All far a compact
	Hence true for $n = k \Longrightarrow$ true for $n = k + 1$ and		Award this A1 for a correct
	since trivially true for $n = 1$ ($\mathbf{A} = \mathbf{A}$), the result is	A1	presentation of proof
	proved by induction.		by b
	1 5		byinduction
	METHOD 3		
	Let the result be true for $n = k$, ie		
	$\begin{bmatrix} 1 & 0 \end{bmatrix}^k \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix}$	M1	
	$\begin{vmatrix} 2 & 1 \end{vmatrix} = k \begin{vmatrix} 2 & 1 \end{vmatrix} - (k-1) \begin{vmatrix} 0 & 1 \end{vmatrix}$		
	$\begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix}$		
	Consider, for $n = k + 1$,	M1	
	$\begin{vmatrix} 1 & 0 \end{vmatrix}^{k+1} - \begin{vmatrix} k \end{vmatrix} \begin{vmatrix} 1 & 0 \end{vmatrix} - (k-1) \begin{vmatrix} 1 & 0 \end{vmatrix} \begin{vmatrix} 1 & 0 \end{vmatrix}$	A1	
	$\begin{bmatrix} 2 & 1 \end{bmatrix} = \begin{bmatrix} k \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} k \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} k \\ -k \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \end{bmatrix}$	111	
	$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix}$	Δ1	
	$= \begin{vmatrix} 1 & 0 \\ 2k & 1 \end{vmatrix} \begin{vmatrix} 1 & 0 \\ 2k & 1 \end{vmatrix} = \begin{vmatrix} 1 & 0 \\ 2(k+1) & 1 \end{vmatrix}$	AI	
	$\begin{bmatrix} 2k & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} 2(k+1) & 1 \end{bmatrix}$		
	But the assumed result for $n = k$ can be written as		
		A1	
	$\begin{vmatrix} 2 & 1 \end{vmatrix} - \begin{vmatrix} 2k & 1 \end{vmatrix}$		
	Hence true for $n = k \Rightarrow$ true for $n = k + 1$ and		Award this A1 for a correct
	since trivially true for $n = 1$ ($\mathbf{A} = \mathbf{A}$), the result is	A1	resonantic of proof
	proved by induction.		by b
			byinduction
9(a)	Taking logs correctly,		
	$\ln f(x) = x \ln 2 + \ln \sin x$	M1	
	Differentiating,		
	$\frac{f'(x)}{1} = \ln 2 + \cot x$	A1A1	
	f(x)	AIAI	
	$f'(x) = 2^x \sin x (\ln 2 + \cot x)$	A1	
(L)			
(D)	Stationary value where $f'(x) = 0$	M1	
	$x = \cot^{-1}(-\ln 2)$ cao	A 1	Condona ionorina dia a
	-2.18		Condone ignoring $\sin x = 0$
	- 2.10	AL	Awalu A1 101-0.90

10(a)(i)	z + 3 = k z - i		
	Putting $z = x + iy$,	M1	
	$(x+3)^2 + y^2 = k^2 x^2 + k^2 (y-1)^2$	A1	
	$x^{2} + 6x + 9 + y^{2} = k^{2}x^{2} + k^{2}y^{2} - 2k^{2}y + k^{2}$		
	$(k^{2}-1)x^{2} + (k^{2}-1)y^{2} - 6x - 2k^{2}y + k^{2} - 9 = 0$	A1	
	(which is the equation of the circle.)		
(ii)	Rewriting the equation in he form $2L^2$		
(11)	$x^{2} + y^{2} - \frac{6}{(k^{2} - 1)}x - \frac{2k^{2}}{(k^{2} - 1)}y = \frac{9 - k^{2}}{(k^{2} - 1)}$	M1	
	Completing the square,	m1	
	$\left(x - \frac{3}{k^2 - 1}\right)^2 + \left(y - \frac{k^2}{k^2 - 1}\right)^2 = \text{terms involving } k$	A1	
	$\text{Centre} = \left(\frac{3}{k^2 - 1}, \frac{k^2}{k^2 - 1}\right)$	A1	Award full credit for the use of the standard result for the coordinates of the centre
(b)(i)	6x + 2y + 8 = 0	B 1	
(ii)	It is the perpendicular bisector of the line joining the points $(-3,0)$ and $(0,1)$	B1	

Ques	Solution	Mark	Notes
1(a)	Let		
	$\frac{5}{2} = \frac{Ax+B}{2} + \frac{C}{2}$	2.64	
	$(x^{2}+1)(2-x)$ $x^{2}+1$ $2-x$	M1	
	$(Ax + B)(2 - x) + C(x^{2} + 1)$		
	$=\frac{(x^2+1)(2-x)}{(x^2+1)(2-x)}$		
	A = 1: B = 2: C = 1		
	(5 + 2 + 2)	AIAIAI	
	$\left(\frac{3}{(r^2+1)(2-r)} = \frac{x+2}{(r^2+1)} + \frac{1}{2-r}\right)$		
	$\left(\begin{pmatrix} x + 1 \end{pmatrix} \begin{pmatrix} 2 & x \end{pmatrix} \right) \begin{pmatrix} x + 1 \end{pmatrix} \begin{pmatrix} 2 & x \end{pmatrix}$		
(b)	$u = \tan r \Rightarrow du = \sec^2 r dr$	D1	
	$u = \tan x \rightarrow uu = \sec x dx$ $[0 \pi/4] \rightarrow [0 1]$	DI R1	
	$\begin{bmatrix} 0, 0, 0 \\ 1 \end{bmatrix}$	DI	
	$I = \int \frac{3}{(2-u)} \times \frac{du}{(1+u^2)}$	M1A1	
	$\frac{1}{0}(2-u)(1+u)$		
	$=\int_{0}^{1} (\frac{u+2}{2} + \frac{1}{2}) du$	A 1	
	$\int_{0}^{1} u^{2} + 1 + 2 - u^{2} u^{2}$	AI	
	$\begin{bmatrix} 1 & 1 & 2 & 2 & 2 & -1 & -1 & -1 & -1 \end{bmatrix}$		
	$= \left \frac{-\ln(u^2 + 1) + 2\tan^2 u - \ln(2 - u)}{2} \right _{0}$	B1B1B1	
	= 2.61 cao	A1	Award M0 if no working
2(a)	Denoting the two functional expressions by f_1, f_2		
	$f_1(-1) = 4, f_2(-1) = -a - b$	M1	
	Therefore $a+b=-4$	A1	
	$f_1'(x) = 2x - 1, f_2'(x) = 3ax^2 + b$	М1	
		IVII	
	$f_1(-1) = -3, f_2(1) = 3a + b$	A 1	
	1 neretore $3d + b = -3$	AI	
	Solving, $a = \frac{1}{2}, b = -\frac{3}{2}$	A1A1	FT one slip in equations
			ET if possible
(0)	$\mathbf{S}_{\text{obs}} = \begin{bmatrix} 1 & 3 & 9 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 3 & 2 \end{bmatrix}$	N <i>T</i> 1 4 4	Award M1 for attempting to
	Solving $\frac{-x^3}{2} - \frac{-x}{2} = 0; x = -3$	MIAI	solve this equation
3 (a)	Modulus of cube roots = $\sqrt[3]{2}$	B1	
	$R_1 = \sqrt[3]{2}(\cos \pi/4 + i \sin \pi/4)$	M1	Use of de Moivre's Theorem
	= 0.891 + 0.891i	Λ1	
		AI	FT their modulus
	$R2 = \sqrt[3]{2}(\cos 11\pi/12 + i\sin 11\pi/12)$	M1	Addition of $2\pi/3$ to argument
	=-1.217+0.326i	A1	C I
	$R3 = \sqrt[3]{2}(\cos 19\pi/12 + i \sin 19\pi/12)$		Penalise accuracy only once
	= 0.326 - 1.217i		
	-0.320 - 1.2171	A1	

(b)(i)	z^n is real when $n = 4$	B2	Award B1 for $n = 8$
(ii)	and imaginary when $n = 2$.	B1	
4	METHOD 1		
	Combining the first and third terms, $(-\pi)$		
	$2\cos\left(2\theta + \frac{\pi}{6}\right)\cos\theta + \cos\left(2\theta + \frac{\pi}{6}\right) = 0$	M1A1	M1 for combining two terms
	$\cos\left(2\theta + \frac{\pi}{6}\right)(2\cos\theta + 1) = 0$	A1	
	Either $\cos\theta = -\frac{1}{2}$,	M1	
	$\theta = 2n\pi \pm \frac{2\pi}{3}$ or $(2n+1)\pi \pm \frac{\pi}{3}$	A1	Accept equivalent answers
	Or $\cos\left(2\theta + \frac{\pi}{6}\right) = 0$	M1	
	$2\theta + \frac{\pi}{6} = 2n\pi \pm \frac{\pi}{2} \text{ or } \left(n + \frac{1}{2}\right)\pi$	A1	
	$\theta = n\pi \pm \frac{\pi}{4} - \frac{\pi}{12} \text{ or } \frac{n\pi}{2} + \frac{\pi}{6}$	A1	Accept equivalent answers
	METHOD 2		
	$\cos\theta\cos\frac{\pi}{6} - \sin\theta\sin\frac{\pi}{6} + \cos2\theta\cos\frac{\pi}{6}$	M1	
	$-\sin 2\theta \sin \frac{\pi}{6} + \cos 3\theta \cos \frac{\pi}{6} - \sin 3\theta \sin \frac{\pi}{6} = 0$		
	Combining appropriate terms,		
	$\cos\frac{\pi}{2}(2\cos\theta\cos 2\theta + \cos 2\theta)$		
	$=\sin\frac{\pi}{6}[2\sin 2\theta\cos\theta + \sin 2\theta]$	A1	
	$\frac{\sqrt{3}}{2}\cos 2\theta (2\cos\theta + 1) = \frac{1}{2}\sin 2\theta (2\cos\theta + 1)$	A1	
	Either $\cos\theta = -\frac{1}{2}$,	M1	
	$\theta = 2n\pi \pm \frac{2\pi}{3}$ or $(2n+1)\pi \pm \frac{\pi}{3}$	A1	
	Or		Accept equivalent answers
	$\tan 2\theta = \sqrt{3}$	M1	
	$2\theta = n\pi + \frac{\pi}{3}$	A1	
	$\theta = \frac{n\pi}{n} + \frac{\pi}{n}$	A 1	
	2 6		Accept equivalent answers

5 (a)			
	$\frac{\mathrm{d}}{\mathrm{d}x} \left(\int_{0}^{x} \mathrm{e}^{\sqrt{u}} \mathrm{d}u \right) = \mathrm{e}^{\sqrt{x}}$	B1	Do not accept integration followed by differentiation
(b)	Put $y = x^2$; $\frac{dy}{dx} = 2x$	M1	
	$\frac{\mathrm{d}}{\mathrm{d}x} \left(\int_{0}^{x^{2}} \mathrm{e}^{\sqrt{u}} \mathrm{d}u \right) = \frac{\mathrm{d}}{\mathrm{d}y} \left(\int_{0}^{y} \mathrm{e}^{\sqrt{u}} \mathrm{d}u \right) \times \frac{\mathrm{d}y}{\mathrm{d}x}$ $= 2x \mathrm{e}^{x}$	A1 A1	Do not accept integration followed by differentiation
(c)	2.00		
	$\int_{x}^{x^{2}} e^{\sqrt{u}} du = \int_{0}^{x^{2}} e^{\sqrt{u}} du - \int_{0}^{x} e^{\sqrt{u}} du$	M1	Award this M1 for the difference of integrals
	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\int_{x}^{x^{2}}\mathrm{e}^{\sqrt{u}}\mathrm{d}u\right) = 2x\mathrm{e}^{x} - \mathrm{e}^{\sqrt{x}} \mathrm{cao}$	A1	
6(a)	We are given that	M1	
	$x^{2} + (y-3)^{2} = (y+3)^{2}$		Do not accept solutions which
	$x^2 + y^2 - 6y + 9 = y^2 + 6y + 9$	A1	focus and directrix
	$x^2 = 12y$		
(b)(i)			
	$x^2 = 36t^2; 12y = 36t^2$	B1	
(••)	showing that the point $(6t, 3t^2)$ lies on C.		
(11)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}x} \div \frac{\mathrm{d}x}{\mathrm{d}x}$		
	dx dt dt	M1	
	$=\frac{6t}{t}=t$. 1	
	6 The equation of the tangent is	AI	
	The equation of the tangent is $y = 3t^2 - t(x - 6t)$		
	$y = 3t^2 = t(x - 6t)$	M1A1	
(iii)	y = ix - 3i		
	Substituting $(0, -12)$ into the equation.		
	$-12 = -3t^2$	M1	
(•)	$t = \pm 2$	A1	
(IV)	Since the positive gradient of the tangent is equal		
	to 2, the angle between the tangent and the y-axis	M1	Award M1 for any valid method
	is equal to $\tan^{-}(1/2)$.		
	The angle between the tangents is therefore equal to $2 \tan^{-1}(1/2) = 52.1^{\circ} \cos 0.027 \text{ rod}$	Δ1	Accept 126.9° or 2.21 rad
	$10 2 \tan (1/2) = 33.1 \text{ Of } 0.927 \text{ fac}$		1

7(a)	<i>x</i> = 1, <i>x</i> = 2	B1	
(b)	f(0) = 1 giving the point (0,1) $f(x) = 0 \Rightarrow x = 2/3$ giving the point (2/3,0)	B1 M1A1	
(c)	$f'(x) = -\frac{1}{(x-1)^2} + \frac{4}{(x-2)^2}$ At a stationary point.	B 1	
	$\frac{1}{(x-1)^2} = \frac{4}{(x-2)^2}$	M1	
	$\frac{1}{1} = \pm \frac{2}{1}$	A1	
	(x-1) $(x-2)giving (0,1) and (4/3,9)$	A1A1	Award A1A0 if only x values given
	$f''(x) = \frac{2}{(x-1)^3} - \frac{6}{(x-2)^3}$	M1	Accept any valid method
	f''(0) < 0 so that (0,1) is a maximum $f''(4/3) > 0$ so that (4/3,9) is a minimum	A1 A1	including looking at appropriate values of $f(x)$ or $f'(x)$
(d)		G1 G1	Award G1 for 2 correct branches
(e)(i) (ii)	f(-1) = 5/6 ; f(0) = 1 f(S) = [5/6,1]	M1 A1	
(***)	$\frac{1}{x-1} - \frac{4}{x-2} = -1$ $x^{2} - 6x + 4 = 0$ $2 + \sqrt{5}$	M1 A1	
	$x = 5 \pm \sqrt{5}$ $f^{=1}(S) = [2/3, 3 - \sqrt{5}] \cup [3 + \sqrt{5}, \infty)$	AI A1	

Ques	Solution	Mark	Notes
1(a)	Expanding the right hand side,		
	$5\cosh\theta + 3\sinh\theta = r\cosh\theta\cosh\alpha + r\sinh\theta\sinh\alpha$	M1	
	$r \cosh \alpha = 5$ and $r \sinh \alpha = 3$	Δ1	
	Squaring and subtracting,	111	
	$r^2(\cosh^2\alpha - \sinh^2\alpha) = 5^2 - 3^2$		
	so that		
	r = 4	A1	
	Dividing,		
	$\frac{\sin \alpha}{\cosh \alpha} = \tanh \alpha = \frac{5}{5}$		
	$\cos(\alpha)$		
	$\alpha = \tanh^{-1}\left(\frac{3}{5}\right) = 0.693$	AI	
(b)			
	Substituting,		
	$4\cosh(\theta + 0.693) = 10$	M1	
	$(\theta + 0.693) = \pm \cosh^{-1}\left(\frac{10}{10}\right)$	Δ1	Condone the absence of \pm here
	$(0 + 0.055) = \pm 0.051 (4)$	AI	
	$\theta = -0.693 \pm \cosh^{-1}\left(\frac{10}{10}\right)$		
	(4)		
	=-2.26, 0.874	A1A1	
2	EITHER		
	$I = \int_{1}^{\pi/2} e^{2x} d(\sin x)$	M1	
	$-\left[2^{2x} \sin x\right]^{\pi/2}$ $2 \int 2^{\pi/2} \sin x dx$	Λ1	
	$= \begin{bmatrix} e & \sin x \end{bmatrix}_{0} - 2 \int_{0}^{1} e^{-\sin x} dx$	AI	
	π $\pi/2$		
	$= e^{x} - 2 \int_{0}^{\infty} e^{2x} d(-\cos x)$	A1A1	
	$a^{\pi} + 2 \left[a^{2x} - a^{2x} \right]^{\pi/2} - 4I$	A1	
	$= e^{\pi} + 2[e^{-\cos x}]_0 - 4I$		
	$= e^{\pi} - 2 - 4I$	A1	
	$I = \frac{e^{-2}}{5}$	A1	
	5		

	OR		
	$I = \int_{0}^{\pi/2} \cos x d\left(\frac{e^{2x}}{2}\right)$	M1	
	$= \left[\frac{e^{2x}}{2}\cos x\right]_{0}^{\pi/2} + \frac{1}{2}\int_{0}^{\pi/2}e^{2x}\sin xdx$	A1	
	$= -\frac{1}{2} + \frac{1}{2} \int_{0}^{\pi/2} \sin x d\left(\frac{e^{2x}}{2}\right)$	A1A1	
	$= -\frac{1}{2} + \frac{1}{4} \left[e^{2x} \sin x \right]_{0}^{\pi/2} - \frac{1}{4} I$	A1	
	$= -\frac{1}{2} + \frac{1}{4}e^{\pi} - \frac{1}{4}I$	A1	
	$I = \frac{e^{\pi}/4 - 1/2}{5/4} = \frac{e^{\pi} - 2}{5}$	A1	
		D1	
3(a)(1)	$f'(x) = 12x^3 - 12x^2 - 6x - 6$	BI D1	
	f'(1.4) = -4.99f'(1.6) = 2.83	D1	
	The change in sign shows that α lies between 1.4	D1	
	and 1.6.	BI	
(ii)	Since α satisfies $f'(\alpha) = 0$, it follows that		
	$12\alpha^3 - 12\alpha^2 - 6\alpha - 6 = 0$	M1	
	so that		
	$2\alpha^3 = 2\alpha^2 + \alpha + 1$	A1	
	$\alpha = \left(\frac{2\alpha^2 + \alpha + 1}{2}\right)^{\frac{1}{3}}$		
(b)(i)			
	Let $F(x) = \left(\frac{2x^2 + x + 1}{2}\right)^{\frac{1}{3}}$		
	$F'(x) = \frac{1}{3} \left(\frac{2x^2 + x + 1}{2} \right)^{-\frac{2}{3}} \times \left(\frac{4x + 1}{2} \right)$	M1A1	
	F'(1.5) = 0.506	A1	
	The sequence converges because $ F'(1.5) < 1$	A1	
(ii)	Using the iterative formula, successive values are 1.5	M1	
	1.518294486	Δ1	
	1.527545210	A1	
	etc		
	$\alpha = 1.537$ (to 3 dps)	A1	

4 (a)	$f'(x) = \frac{\sinh x}{1 + \cosh x}$	B 1	
	$r + \cosh x$ $\cosh x(1 + \cosh x) - \sinh^2 x$	N/T1	
	$f''(x) = \frac{1}{(1 + \cosh x)^2}$	IVI I	
	$= \frac{\cosh x + 1}{2}$	4.4	
	$(1 + \cosh x)^2$	AI	
	$=\frac{1}{1+\cdots+1}$		
	$1 + \cos n x$		
(b)	$f'''(x) = -\frac{\sinh x}{1-h}$	R1	
	$(1 + \cosh x)^2$	DI	
	$f'''(x) = \frac{-\cosh x(1 + \cosh x)^2 + \operatorname{termincsinhx}}{(1 + \cosh x)^4}$	M1A1	
	$f(0) = \ln 2, f'(0) = 0, f''(0) = \frac{1}{2}$		
	$f'''(0) = 0, f'''(0) = -\frac{1}{4}$	B1	FT their derivatives
	The Maclaurin series for $f(x)$ is		
	$\ln 2 + \frac{x^2}{4} - \frac{x^4}{96} + \dots$	M1A1	
5 (a)	dx 1 + cost dy sin t		
	$\frac{dt}{dt} = 1 + \cos t; \frac{dt}{dt} = \sin t$	BI	
	$\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2 = 1 + 2\cos t + \cos^2 t + \sin^2 t$	M1	
	$=2(1+\cos t)$	A1	
	$= 4\cos^2\frac{1}{2}t$		Convincing
(b)(i)	Δ		
	Arc length $= \int_{0}^{\pi} 2\cos\frac{1}{2}t dt$	B1	
	$= \left[4\sin\frac{1}{t} \right]^{\pi}$	B1	
		D1	
	=4	DI	

(ii)	$CSA = 2\pi \int y \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$	M1	
	$= 2\pi \int_{0}^{\pi} (1 - \cos t) \times 2\cos \frac{1}{2}t dt$	A1	
	$= 4\pi \int_{0}^{\pi} (\cos\frac{1}{2}t dt - \frac{1}{2} \left(\cos\frac{3}{2}t + \cos\frac{1}{2}t\right)) dt$	A1	Or $8\pi \int_{0}^{\pi} \sin^{2} \frac{1}{2}t \cos \frac{1}{2}t dt$
	$= 4\pi \left[\sin \frac{1}{2}t - \frac{1}{3}\sin \frac{3}{2}t \right]_{0}^{\pi}$	A1	$= \frac{16\pi}{3} \left[\sin^3 \frac{1}{2} t \right]_0^{\pi}$
	$=\frac{10\lambda}{3}$	A1	
6(a)	$\frac{d}{dx}\left((4-x^2)^{\frac{3}{2}}\right) = \frac{3}{2}(4-x^2)^{\frac{1}{2}} \times (-2x)$		
	$=-3x(4-x^2)^{\frac{1}{2}}$	B1	Convincing
(b)	$I_n = -\frac{1}{3} \int_0^2 x^{n-1} \frac{d}{dx} ((4-x^2)^{3/2} dx)$	M1	
	$= -\frac{1}{3} \left[x^{n-1} (4-x^2)^{3/2} \right]_0^2 + \frac{n-1}{3} \int_0^2 x^{n-2} (4-x^2)^{3/2} dx$	A1A1	
	$= \left(\frac{n-1}{3}\right)_{0}^{2} x^{n-2} (4-x^{2})\sqrt{4-x^{2}} dx$	A1	
	$=\frac{n-1}{3}(4I_{n-2}-I_n)$	A1	
	$I_n = \left(\frac{4(n-1)}{n+2}\right) I_{n-2}$		
(c)(i)	Evaluate $I_0 = \int_0^2 \sqrt{4 - x^2} \mathrm{d}x$		
	Put $x = 2\sin\theta$, $dx = 2\cos\theta d\theta$, $[0,2] \rightarrow [0,\pi/2]$	M1	
	$I_0 = 4 \int_0^{\infty} \cos^2\theta \mathrm{d}\theta$	M1A1	
	$=2\int_{0}^{\pi/2} (1+\cos 2\theta) \mathrm{d}\theta$	A1	
	$= 2 \left[\theta + \frac{1}{2} \sin 2\theta \right]_0^{\pi/2}$	A1	
(ii)	$= \pi$ $I_4 = 2I_2$	M1	
	$= 2 \times 1 \times I_0$ $= 2\pi$	A1	

7(a)	Consider		
	$x = r\cos\theta$		
	$= \tan\left(\frac{\theta}{2}\right)\cos\theta$	B1	
	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = \frac{1}{2}\sec^2\left(\frac{\theta}{2}\right)\cos\theta - \tan\left(\frac{\theta}{2}\right)\sin\theta$	M1	
	The tangent is perpendicular to the initial line (2)		
	where		
	$\frac{1}{2}\sec^2\left(\frac{\theta}{2}\right)\cos\theta = \tan\left(\frac{\theta}{2}\right)\sin\theta$	A1	
	$\frac{1}{2}\left(1 + \tan^2\left(\frac{\theta}{2}\right)\right) = \tan\left(\frac{\theta}{2}\right)\frac{\sin\theta}{\cos\theta}$	A1	
	$2\tan\theta\tan\left(\frac{\theta}{2}\right) = 1 + \tan^2\left(\frac{\theta}{2}\right)$		
	Putting $t = \tan\left(\frac{\theta}{2}\right)$,		
	$2t \times \frac{2t}{1-t^2} = 1+t^2$	M1	
	$t^4 + 4t^2 - 1 = 0$	A1	
	$t^2 = -2 + \sqrt{5}$	A1	
	$\left(t = \sqrt{-2 + \sqrt{5}}\right)$		
	$A = 0.905 (51.8^{\circ})$	A1	
A \	r = t = 0.486	A1	
(b)	Area = $\frac{1}{2}\int r^2 d\theta$		
	$\frac{2}{1} \frac{\pi}{2} = 0$	M1	
	$=\frac{1}{2}\int_{\Omega}\tan^{2}\frac{\partial}{2}d\theta$		
	$1^{\frac{\pi}{2}}$ θ	A1	
	$=\frac{1}{2}\int_{0}^{1}(\sec^{2}\frac{\theta}{2}-1)d\theta$		
	$1\begin{bmatrix} 0 & \theta & 0 \end{bmatrix}^{\pi/2}$	A1	
	$=\frac{1}{2}\left[2\tan\frac{1}{2}-\theta\right]_{0}$		
	$=1-\frac{\pi}{4}$ (0.215)	A1	
	4		

WJEC 245 Western Avenue Cardiff CF5 2YX Tel No 029 2026 5000 Fax 029 2057 5994 E-mail: <u>exams@wjec.co.uk</u> website: <u>www.wjec.co.uk</u>